
Reliable and Unobtrusive Inter-Device Collaboration
by Continuous Interaction

Rudolf Kajan, István Szentandrási, Adam Herout, Alena Pavelková
Faculty of Information Technology

Brno University of Technology
Božetěchova 1/2

612 66, Brno, Czech Republic
{ikajanr, iszent, herout, ipavelkova}@fit.vutbr.cz

ABSTRACT
Currently, there is a lack of support for seamless task migration among devices - starting a task on one device and
continuing it on another, without the need of manual application state inspection and data transfer. We are solving
this problem by employing our framework for application state acquisition coupled with user interface based on
an intuitive metaphor: video recording. Our solution utilizes a combination of natural features based detection
and marker tracking in order to reliably establish the homography between the screen and the observation of the
mobile device’s camera. This allows us to employ a fast and precise continuous interaction even on low-end mobile
devices. In every moment, user is given relevant task and content-migration options for selected application. The
experimental results show that our solution provides reliable task migration at interactive frame rates.

Keywords
Task Migration; Augmented Reality; Multi-device environment; Mobile interaction; Situated public displays

1 INTRODUCTION
An important role of intelligent user interfaces is the
support of intuitive information sharing and task migra-
tion among users’ devices, whether they are desktops,
mobile or ultra-mobile devices. On a daily basis users
want to continue with a previously started task on an-
other device.

Whether users want to take their planned trip from
desktop to a mobile device, continue a game, share
commented photos on a public display or seamlessly
continue watching a video stream on another device,
task migration is very desired, yet at the same time
also very challenging. For web applications this is
true mainly because their state is no longer represented
by the URL, as asynchronous operations are continu-
ously changing their internal state in the background.
Desktop applications are primarily document-centric
and content migration involves manual file localiza-
tions, transfer to another device and file processing
with a selected mobile application. If the user decides
to simply photograph an interesting on-screen content,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the resulting picture quality is very low when com-
pared to the original on-screen quality and no additional
content-related metadata are transferred.

In this paper, we present a way to make this task mi-
gration or content sharing process instant and intuitive.
In particular, the method explored here is completely
mobile-centric, i.e. no user interaction needs to be done
on the side of the content provider screen. That makes
our approach especially feasible for acquiring informa-
tion from public displays.

We make the following contributions in our paper: a)
We present a novel interaction technique for continuous
interaction across mobile and desktop platforms; b) We
present a framework for real-time application state ac-
quisition and reconstruction on target platform; c) We
report on a user study focused on the usability of our
prototype and a system performance evaluation.

2 RELATED WORK
Chang and Li proposed DeepShot [6] – a framework for
capturing work state which uses natural visual features
(SURF, [4]) and tracks them. Their approach is a sim-
plified sibling of PTAM (Parallel Tracking and Map-
ping, [11]).

Feature based techniques in general try to find a corre-
spondence between extracted 2D feature points (SIFT
[13], SURF [4], FAST [16], etc.), and their positions in
real world. To achieve this, image feature point descrip-
tors (SIFT [13], SURF [4], BRIEF [5], BRISK [12],

etc.) are matched with feature points in video frame
capturing the real world. Camera pose can then be es-
tablished by projecting the 3D points into the image and
minimizing the distance to their corresponding 2D posi-
tions. For discarding outliers, algorithms like RANSAC
or TUKEY-Estimator are used [19].

A notable natural feature point based method es-
tablishing camera pose in an unknown scene is the
above-mentioned PTAM [11]. This method uses
parallel tracking and mapping to create a map of the
scene. The tracking and mapping are separate task,
running simultaneously. The tracking part tracks the
motion of a hand-held camera while the mapping part
creates a map of the 3D space.

If the tracked scene is composed of a single plane, cam-
era pose relative to the plane can be computed from sev-
eral frames using image rectification algorithm as de-
scribed by Pirchheim et al. [15]. This system computes
6DOF camera poses relative to the plane. When the
relation between the camera pose and plane is known,
other camera poses can be computed using inter-frame
homographies.

However, there is one major drawback of feature based
techniques: despite various techniques to balance the
features’ density in the camera view, it is impossible
to ensure the presence of enough visual features in the
whole camera view. In the case of observing a computer
screen, the problem is even more difficult because un-
like the real world, the monitor screen tends to contain
surfaces of exactly constant color, backlit by the moni-
tor lamp and thus avoiding any external lighting which
would help distinguish unique locations.

Instead of natural features, artificial markers can be
used to establish camera pose relative to the marker.
Widely used markers, such as ARToolkit [10] markers
or ARTag [7][1], are both suitable. Some more recent
markers, like Uniform Marker Fields [17] or ReacTIVi-
sion [9], are good options as well. Uniform Marker
Fields has already been used in previous research by
Kajan et al. for content migration [8]. Our proposed
system features a more robust and faster way to mi-
grate content thanks to the combination of natural fea-
ture points based method and Vuforia [2] marker and is
much less obtrusive thanks to the marker’s visual inte-
gration into our system.

A step towards direct information transfer from a desk-
top screen to an ultramobile device are the VR Codes
by Woo et al. [18]. In this solution, a digital payload is
encoded into solid gray surfaces on the screen by a time
multiplex. The encoding requires a significant compu-
tational effort on the desktop monitor side, and assumes
a particular design of the camera (rolling shutter) on the
mobile side. This method could be more promising for
the desired purpose of task migration if it allowed en-

coding the information into arbitrary images and into
dynamic content.

In order to allow mobile use, the requester device
continuously tracks itself with respect to interactive
displays in its surrounding using its built-in camera
and computes its spatial relationship between itself and
each identified display.

Our inspiration and the leading metaphor was video
recording on mobile platforms and augmented reality
applications in general. In these scenarios users usually
just point their device’s camera at the object of interest
and immediately begin to record (capture) it or interact
with it. Our interaction technique provides the user at
every moment with relevant task and content-migration
options for the selected application and its content. Our
approach thus emphasizes spontaneous and unplanned
content access with minimal user input, while being
very responsive.

3 PROPOSED SYSTEM ARCHITEC-
TURE

With the continuous interaction in mind, we have de-
signed a highly responsive system which allows for in-
tuitive task migration without the need of manual appli-
cation state inspection or copying of “raw” pixels with-
out any additional semantic information. The task mi-
gration process from the system architecture’s point of
view is a two-way communication between a content
provider and a content requester device (See Fig. 1).

Device in the role
of content provider

Device in the role
of content requester

Figure 1: The task migration process between a content
requester and a content provider device.

The content provider device is the device with the ap-
plication state that needs to be transferred to the other
device or platform based on the user’s current context.
A device in this role is able to share the state of its appli-
cations with authenticated clients – content requesters.
The content provider device provides the state of its
applications by either querying individual applications
for their current work state (URL and internal settings
for web applications, the document along with current
page number for document viewers, streamed multime-
dia content, and other metadata) or provides general
services, e.g. providing high quality screenshots of a

selected screen area or text from a selected area via op-
tical character recognition.

Content requesters are responsible for communication
initiation with the target provider device, for selection
of the screen region or application of interest and se-
lection of requested/offered content based on the user’s
intent. In a typical scenario, content requesters are mo-
bile or ultra-mobile devices (smart phone, tablet, PDA).

3.1 System Components and Their Func-
tionality

The communication between requester and provider de-
vices during the task migration process is shown in Fig-
ure 2. Prior to the task migration, a network connection
between the content requester and the provider must
be established. The network session manager module,
which is present on both devices, is responsible for net-
work connection initiation to a remote content provider
(e.g. public display, laptop). At the moment, the com-
munication is implemented through a WiFi connection,
due to its availability on a broad range of devices.

External Applications

Localization
Manager

Interaction
Manager

Intent
Manager

App
Launcher

Network Session Manager

State Manager

Localization
Manager

External Applications

Default
Intents

Context
Manager

Network Session Manager

Device in the role of content provider Device in the role of content requester

Figure 2: System overview. Content requester commu-
nicates wirelessly with a content provider. The system
on both sides consists of a stack of functional blocks
(blue rectangle) whose purpose is to ensure information
sharing between the built-in or third-party applications
(red rectangles).

The target device is located either via network discov-
ery or by scanning a specific code associated with tar-
get device (e.g. on-screen or printed visual marker /
matrix code). Sudden changes in network connectiv-
ity are addressed by usage of MobileIP1 in the existing
infrastructure. MobileIP is able to seamlessly handle
connection hand-overs during migration in a way that is
transparent to the content provider. The communication
channel is secured by IPSec - suite of protocols which
provide data source authentication, data integrity, con-
fidentiality and protection against attacks2.

The localization manager on the requester device is
used for fast and accurate client-side within-screen lo-

1 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=656077
2 http://tools.ietf.org/html/rfc3776

calization. The localization is based either on marker
tracking or natural image keypoint detection, features
extraction and matching. Natural features based de-
tection is employed during the initial position estima-
tion and when the devices cannot successfully track the
marker. This approach minimizes the amount of trans-
ferred data between the devices, because only the de-
tected 2D position coordinates are sent back to the con-
tent provider.
The transferred and processed content is much smaller
compared to the purely feature-based solutions where
either the feature vectors or the whole camera stream
are sent to the target device or to an intermediate server
for processing and camera localization. This allows for
fast and reliable real-time interaction with immediate
feedback even on low-end devices.
Based on the obtained camera-localization information,
the provider’s context manager queries individual ap-
plications and gathers their internal state. In order to
obtain the full application state from web applications,
we have implemented an extension for Google Chrome
browser and plugins for applications from Microsoft
Office suite.
If the selected application is unable to provide its state
and metadata, only general intents are available. Gen-
eral intents include high-quality screenshots, and text
and phone numbers recognition for the selected part of
the screen (the OCR functionality is implemented via
Microsoft MODI library3).
The acquired application state is sent to the intent man-
ager on the requester device which translates these
JSON-encoded messages to intents directly usable on
the requester platform.
Afterwards, the state manager provides the user with
a visual feedback and updates the GUI, based on the
available actions for the selected content. The options
include resuming work on a requester device – continu-
ing work with a reconstructed web application state on
a current device, editing text in an available text editor,
manipulation and viewing of images, audio/video play-
back, etc.

3.2 Marker Tracking and Natural Key-
points based Detection

Our solution utilizes a combination of natural features
based detection and marker tracking in order to reliably
establish the homography between the screen and the
observation of the mobile device’s camera. This allows
us to employ a fast and precise continuous interaction
even on low-end mobile devices.
During the initialization phase and in case of fast cam-
era movement, we employ natural features based detec-
tion. Detecting keypoints and extracting features on the

3 http://support.microsoft.com/kb/982760

mobile phone would be too costly on some low-end de-
vices. Instead, the features are computed and matched
on the content provider. Similar approach was taken in
[6] and [3]. The difference is, that our solution does
not stream the video, as it would generate high network
traffic (see experiments). Instead, we use natural fea-
tures detection as a fallback method, and send frames
only in large intervals.

A major disadvantage of pure natural features based
methods is that they rely on rich features being present
on the target display. This assumption is rarely met in
the highly manhattanic world of desktop and web appli-
cations. As a solution, we utilize a virtual cursor using
the Vuforia library on the content requester side com-
bined with a small natural image target on the content
provider. The natural image target is used to compute
the required offset on the content provider caused by
the camera movement. The computed relative correc-
tion is sent to the content provider. This is our primary
method of camera movement tracking.

The image target also serves a secondary objective as a
reference position to draw the augmented UI elements
of the application. These elements give visual feedback
to the users, so they move within acceptable distance
from the content provider. The augmented layer also
hides the obtrusive marker on the client side.

If multiple users are simultaneously interacting with a
single provider, their primary mean of localization is
natural features based detection of a target. In the case
that multiple targets overlap, clients automatically fall
back to natural keypoints tracking on the target display.
This approach ensures that the interaction will not be in-
terrupted even if multiple users are migrating the same
elements at the same time.

4 IMPLEMENTED SOLUTION –
CHROME AND ANDROID

As a proof of concept and as the prototype for user test-
ing and exact experimental evaluation, we created a pi-
lot version of the whole system.

4.1 Content Provider Chrome Plugin
In order to be able to access and examine the full
application state of an online application, the content
provider needs to access the loaded content in a web
browser. We have developed an extension for the
Chrome browser. This extension acts as a communi-
cation bridge between our application on the content
provider device and web applications running inside
the browser.

When the user selects contents of a web page (blocks
of text, images, videos or links to other web-based re-
sources) or a complete online application state (e.g., a

Figure 3: The user interface of the requester device con-
sists of three layers - live video stream from the device’s
camera, 3D GUI based on augmented reality and con-
tent acquisition GUI dynamically updated with respect
to the current content selection.

trip planned in Google Maps) for a migration, the ex-
tension finds the active web application and through the
code injection inserts a script into it4. This script is
able to directly manipulate with the page’s Document
Object Model (DOM) and extract the required parts of
the online application and send them back to the con-
tent provider. In the case of full-state migration request,
the plugin extracts all files with internal variables (e.g.,
referenced javascripts) and sends them to the content
provider. This script executes in the context of a page
that’s been loaded into the browser, making it a part
of a web application, not a part of the extension. The
script is also able to inject information into web appli-
cation, thus allowing for continuation of task. We have
chosen this approach as all widely-used browsers sup-
port code injection into loaded pages. After the extrac-
tion, the content provider forwards content data to the
requester device, where the application state is recon-
structed, thus allowing the user to continue with a task
on the other device.

4.2 Content Requester Android Applica-
tion

For the implementation of a mobile content requester
prototype we chose the Android platform because of its
availability on a broad range of mobile and ultramobile
devices. For the initial design of our application, the
main goal was a clean and minimalistic design of con-
trol elements, which will support the video recording
metaphor.
After starting the application, the user is welcomed with
the option to choose between connecting to a previously
used provider device, using network discovery to dis-
cover available provider devices or by scanning a spe-
cific code associated with target device.
After connection, the detection algorithm computes the
position of the requester device with respect to the cur-
rent provider and optionally position of a virtual cursor

4 http://developer.chrome.com/extensions/content_scripts.html

which helps the user to identify the exact spot the user
is pointing at.

The main user interface can be seen in Figure 3. The in-
terface consists of three layers. Live video stream from
device’s camera is on the lowest layer. On top of the
video stream is an augmented reality 3D GUI. The main
advantage of the augmented reality interface element is
that it naturally guides the user to the appropriate dis-
tance and angle with respect to the content provider by
the means of size and rotation change. This interface
is used to mark the content for migration – similarly
to a video camera’s record button. It is used by user’s
non-dominant hand. The topmost layer consists of 2D
elemets which are dynamically changed based on the
content which the user is currently selecting for migra-
tion and display preview of recorded items – blocks
of text, images, hyperlinks. If any of this content is
touched by the user’s (dominant) hand, options for fur-
ther processing are displayed. These options are depen-
dent on the selected content and include editing, sharing
on social networks, saving to the device or launching an
appropriate Intent.

During the interaction between the content provider and
the requester device, the application stores the history
of the accessed content and allows the user to access it
later.

5 EXPERIMENTS
We tested both the reliability of our feature detection-
based algorithm and the tracking performance of the
Vuforia library as a part of the user tests. We created
a setup consisting of one device in the role of content
provider (17 inch laptop computer with 1920 × 1080
resolution display and an Intel R©CoreTMi7 processor
running at 2.2GHz) and one device in the role of con-
tent requester (Samsung Galaxy S2 smartphone).

The study we conducted involved 25 participants. In the
beginning, the participants were asked to fill in a ques-
tionnaire. This questionnaire asked them about their
technical expertise, their knowledge regarding mobile
phones, as well as some demographic statements. The
average age of attendees was 28 years, the youngest
participant was 21 and the oldest was 42. Ten partic-
ipants were from non-technical professions.

5.1 Tracking Reliability
In order to evaluate the reliability of the feature de-
tection based algorithm used during initiation, the re-
quester device was attached to a base perpendicular to
the floor, in a fixed height, focused at a chosen part of
the screen (see Fig. 4). The experiment was conducted
in a room with artificial (fluorescent) lighting. The de-
vices were connected through a WiFi connection.

The requester device was held at a distance of 10, 20
and 30 cm and a pitch angle of 75◦, 90◦, 105◦, and

Figure 4: Parameters of reliability setup for initializa-
tion – distance between mobile device and laptop, range
of screen angles used during tests and height range of a
mobile device in order to be focused on the same point
on the screen.

120◦. On the content provider device a fullscreen web
application containing text, several smaller images, and
a map was displayed during the experiment. The reso-
lution of the images sent to the content provider to com-
pute the initial homography was 320×240.

0

5

10

15

20

10 20 30

N
u

m
b

er
 o

f
su

cc
es

sf
u

l m
at

ch
es

Adjusted distance to the screen (cm)

120°

105°

90°

75°

Figure 5: The results of natural feature detection re-
liability for different pitch angles. For each distance
settings 20 images were taken - 5 per each angle.

Figure 5 contains the evaluation of the reliability of our
natural feature based detection for different pitch an-
gles for the content provider device. For each distance
settings 20 images were taken – 5 per each angle. The
results show that the natural features based detection
was highly reliable. For angles 120◦ and 75◦ the col-
ors shown on the content provider were highly shifted
changing the visible key-point features causing slightly
worse results. This issue is caused mostly by the dis-
play used in testing and would harm any computer vi-
sion based technique.

During user testing, the participants were given several
tasks to migrate data. During the tasks we recorded the
tracking status of our system. The detection algorithm
ran at 20 frames per second. Figure 6 shows the prob-

ability of successfully localizing the content requester
relative to the content provider. The blue line shows the
probability of successfully tracking for a given amount
of time given that we successfully tracked the previ-
ous frame. After the tracking was lost, a full frame
was transferred to the content provider in order to be
used for natural features based detection (hence the step
around the 1s mark). The delay interval of 1 second for
full frame sending was chosen not to overload the net-
work connection. The results show that after 4s the cur-
sor tracking algorithm was able to restore tracking with
99% probability. This causes a short but noticeable de-
lay for the user after the tracking is lost and needs to
be restored. Despite this delay, the overall performance
of the natural feature detection is good enough to pro-
vide the users with continuous interaction, and is an
area which we are planning to improve.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

P
ro

ab
ili

ty
 o

f
tr

ac
ki

n
g

su
cc

es
s

Time [s]

Tracking Detection

Figure 6: Breakdown of the probability distribution for
the tracking phase (blue) – the probability of tracking
continuously for a given time; and the detection phase
(brown) – the probability distribution in time of suc-
cessfully restoring cursor tracking.

5.2 Speed Performance
In order to be able to compare our solution with alter-
native frameworks (e.g. Touch Projector or DeepShot),
we tested four target applications: maps from Google
Maps, photos from Picasa, long articles with images
from CNN.com and short textual information from
Twitter. For each application, 10 information requests
were sent and processed. The setup for this experiment
was identical to the previous test. All tests were done
using the hardware from the setup for the reliability
testing (See section Reliability above).

Table 1 summarizes the breakdown of the time con-
sumed by the initiation phase of the interaction for a
single frame. The majority of the time (59.2%) was
consumed by network transfer of the reference image.
This gives 1.3 FPS for the natural features based posi-
tion estimation part. In the setup experiment we sent
reference images in 1s intervals to avoid flooding the
network.

Once the tracker was initialized, it was able to track
the cursor with full 20 FPS speed provided by the cam-

Activity Time spent
Client side processing 11 ms
Network transfers (WiFi) 442 ms
Provider-side processing 289 ms
State acquisition via plugin 4 ms
Sum 746 ms

Table 1: Timing breakdown of the initialization phase.
Client side processing covers camera image retrieval
and resizing operation. Provider-side processing in-
cludes image reconstruction, acquiring screenshot and
homography calculations.

era on the tested smartphone. After the user decided to
migrate content from the content provider, the required
time to transfer information was 19ms on average in-
cluding network communication (approximately 73%).

The results show a significant speed increase when
compared to task migration solutions based on visual
features – the authors of the DeepShot [6] task migra-
tion framework report 7.7 seconds (SD 0.3 seconds) for
processing the request, and allows for real-time infor-
mation feedback for a selected screen area. A big ad-
vantage of our system is the utilization of video stream,
which enables continuous interaction instead of discreet
selection.

5.3 Bandwidth usage
Table 2 summarizes the required bandwidth of our sys-
tem measured during the user test described in section
Reliability. The last row contains the theoretical min-
imum required bandwidth if we used natural features
only. In this scenario we assume that the content re-
quester detects and extracts at least 20 binary feature
vectors of 512 bits (common for state-of-the-art binary
feature descriptors). These feature vectors are then sent
to the content provider for homography computations.
We also assume a speed of at least 15 FPS for continu-
ous detection.

Natural
Mean Peak Average features

546.5 B/s 82.4 kB/s 7.8 kB/s 19.2 kB/s

Table 2: Bandwidth usage of our system used for inter-
action between content provider and content requester.

The results show that our system requires on aver-
age 2.5× less bandwidth than the theoretical minimum
bandwidth used up by a pure natural features-based ap-
proach. However, 88.4% of the time during interac-
tions (cursor tracking) our system requires just 0.5kB/s
bandwidth, which is approximately 35× less than a nat-
ural features based approach. Our system needs more
bandwidth only in the initialization phase and in the
case when the cursor tracking is lost during the interac-

tion. In the future, this part could be replaced by com-
puting features on the content requester side.

5.4 Content Selection Accuracy
In order to measure accuracy of content selection with
our system, we have used targeting tasks based on ISO
9241-9 standard [14]. However, we have used a rectan-
gular target instead of a distinct target point. We asked
participants to try to navigate pointer into the rectangu-
lar area, while being as fast as possible.

The task started after the connection between requester
and provider devices was established and the track-
ing subsystem was fully initialized. Afterwards users
were notified about trial’s start and moved the virtual
cursor inside the area filled with text or images. The
task ended once the cursor was inside the area and
user touched the content acquisition button with non-
dominant hand. We measured time and virtual cursor’s
coordinates throughout trials.

The trials were performed for three different sizes of
the target area, corresponding to the sizes of standard-
ized web elements. During the testing trials, timestamp
and virtual cursor position was recorded for every re-
ceived position information. From these recorded data,
Throughput was computed. Throughput, in bits per
second, is a composite measure derived from both the
speed and accuracy in responses [14]. The results are
shown in Figure 7.

Another information obtained from these data is av-
erage target re-entry. This information estimates how
many times has the virtual cursor left and re-entered
the target area after it entered it the first time. As can be
seen in Figure 7 right, target re-entry strongly depends
on the size of the target area. The reason for majority
of target re-entries in small target areas was the natural
hand tremble.

0

0.3

0.6

0.9

1.2

88x31 120x60 180x150

Th
ro

u
gh

p
u

t
[b

p
s]

Target resolution [pixels]

0

5

10

15

20

25

88x31 120x60 180x150

Er
ro

r
ra

te
 [

%
]

Target resolution [pixels]

Figure 7: Left: Average throughput acquired during ex-
periments where the user was moving the virtual cursor
from starting point to the target area. In the graph is
shown connection between the throughput and the sizes
of the target area, which were chosen according to the
sizes of standard web elements. Right: Average error
rate depending on the size of the target area.

When compared to commonly used pointing devices,
our system had a lower Throughput (TP), but also lower

Error Rate (ER) for primary migration targets - images,
text paragraphs, links (in [14] the reported values were:
joystick TP 1.8 bps ER 9%, touchpad TP 2.9 bps ER
7%, trackball TP 3.0 bps ER 8.6%, mouse TP 4.9 bps
ER 9.4%).

These results show that our system is comparable to
commonly used pointing devices and usable even by in-
experienced users. In the near future, we will improve
both Throughput and Error Rate. We will compensate
for natural hand tremble (which is the main source of
lower TP and higher ER) by employing a smooth esti-
mate of cursor’s position and add the option to (semi-
)automatically zoom for a better selection of content
from remote providers.

6 CONCLUSION
We presented a solution for seamless task migration
among a broad range of devices. Our approach empha-
sizes spontaneous and unplanned content access with
minimal user input, while being very responsive. This
interaction is based on an intuitive metaphor of video
recording.

Our interface allows for continuous interaction - mobile
device’s display is updated in real-time and receives
continuous feedback based on the content user is cur-
rently looking at. In every moment user is given rel-
evant task and content-migration options for selected
application and its content.

In order to reliably establish the homography between
the screen and the observation of the mobile device’s
camera our system utilizes a combination of natural fea-
tures based camera pose detection and virtual cursor
tracking. This allows us to employ a fast and precise in-
teraction even on low-end mobile devices, support mi-
gration of static and dynamic screen content and allow
for simultaneous interaction of multiple users.

We created a prototype implementation of the whole
solution which allows for task and content migration
from web applications to a mobile client.

This prototype was examined within a user study and
by a set of performance evaluation experiments. The
results indicate that it substantially outperforms the ex-
isting solutions: the localization and task migration is
done in real time on a mid-level cellphone; the local-
ization is reliable even for different observation angles
and for cluttered screen content. Our solution operates
on a video stream with all the benefits: if one camera
frame fails for a reason, the mobile client program de-
termines the location from a subsequent valid one.

In near future, we are going to focus on increasing in-
teraction distance, thus allowing for continuous inter-
action with remote and unreachable displays. This will
be made possible by employing automatic and semi-
automatic zoom functionality for selected content. We

will also explore the possibilities of making the tracked
cursor as unobtrusive as possible and minimize the re-
quired time for the fiducial to be present on the screen.

7 ACKNOWLEDGMENTS
This research was supported by the research
CEZMSMT project IT4I - CZ 1.05/1.1.00/02.0070, by
project V3C, TE01020415, and by project D-NOTAM
TA02030835.

8 REFERENCES
[1] ALVAR tracking subroutines library web page,

2012. http://www.vtt.fi/multimedia/alvar.html.
[2] Vuforia - enable your apps to see, 2014.

http://www.vuforia.com.
[3] D. Baur, S. Boring, and S. Feiner. Virtual projec-

tion: exploring optical projection as a metaphor
for multi-device interaction. In Annual Confer-
ence on Human Factors in Computing Systems,
pages 5–10, 2012.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.
Speeded-up robust features (surf). Comput. Vis.
Image Underst., 110(3):346–359, June 2008.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua.
Brief: binary robust independent elementary
features. In Proceedings of the 11th Euro-
pean conference on Computer vision: Part IV,
ECCV’10, pages 778–792, Berlin, Heidelberg,
2010. Springer-Verlag.

[6] T.-H. Chang and Y. Li. Deep shot: a framework
for migrating tasks across devices using mobile
phone cameras. In Proc. SIGCHI, pages 2163–
2172, 2011.

[7] M. Fiala. ARTag, a fiducial marker system us-
ing digital techniques. In Proceedings of the 2005
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Vol-
ume 2 - Volume 02, CVPR ’05, pages 590–596,
Washington, DC, USA, 2005. IEEE Computer
Society.

[8] R. Kajan, I. Szentandrasi, A. Herout, and
M. Zacharias. On-screen marker fields for reliable
screen-to-screen task migration. In SouthCHI,
pages 692–710, 2013.

[9] M. Kaltenbrunner and R. Bencina. reactivision:
a computer-vision framework for table-based tan-
gible interaction. In Proceedings of the 1st inter-
national conference on Tangible and embedded
interaction, TEI ’07, pages 69–74, New York,
NY, USA, 2007. ACM.

[10] H. Kato and M. Billinghurst. Marker tracking and
HMD calibration for a video-based augmented
reality conferencing system. In IWAR’99, pages
85–94, 1999.

[11] G. Klein and D. Murray. Parallel tracking and
mapping for small ar workspaces. In Proceed-
ings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, IS-
MAR ’07, pages 1–10, Washington, DC, USA,
2007. IEEE Computer Society.

[12] S. Leutenegger, M. Chli, and R. Y. Siegwart.
Brisk: Binary robust invariant scalable keypoints.
In Proceedings of the 2011 International Con-
ference on Computer Vision, ICCV ’11, pages
2548–2555, Washington, DC, USA, 2011. IEEE
Computer Society.

[13] D. Lowe. Object recognition from local scale-
invariant features. In Computer Vision, 1999.
The Proceedings of the Seventh IEEE Interna-
tional Conference on, volume 2, pages 1150 –
1157 vol.2, 1999.

[14] I. S. MacKenzie, T. Kauppinen, and M. Silfver-
berg. Accuracy measures for evaluating computer
pointing devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems, CHI ’01, pages 9–16, New York, NY, USA,
2001. ACM.

[15] C. Pirchheim and G. Reitmayr. Homography-
based planar mapping and tracking for mobile
phones. In Proceedings of the 2011 10th IEEE In-
ternational Symposium on Mixed and Augmented
Reality, ISMAR ’11, pages 27–36, Washington,
DC, USA, 2011. IEEE Computer Society.

[16] E. Rosten and T. Drummond. Fusing points and
lines for high performance tracking. In Proceed-
ings of the Tenth IEEE International Conference
on Computer Vision - Volume 2, ICCV ’05, pages
1508–1515, Washington, DC, USA, 2005. IEEE
Computer Society.

[17] I. Szentandrasi, M. Zacharias, J. Havel, A. Her-
out, M. Dubska, and R. Kajan. Uniform marker
fields: Camera localization by orientable de bruijn
tori. In Mixed and Augmented Reality (ISMAR),
2012 IEEE International Symposium on, pages
319–320, Nov 2012.

[18] G. Woo, A. Lippman, and R. Raskar. Vrcodes:
Unobtrusive and active visual codes for interac-
tion by exploiting rolling shutter. In Proceedings
of the 2012 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), ISMAR
’12, pages 59–64, Washington, DC, USA, 2012.
IEEE Computer Society.

[19] H. Wuest, F. Vial, and D. Stricker. Adaptive line
tracking with multiple hypotheses for augmented
reality. In Proceedings of the 4th IEEE/ACM In-
ternational Symposium on Mixed and Augmented
Reality, ISMAR ’05, pages 62–69, Washington,

